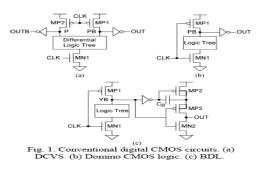


GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES LOW VOLTAGE BOOSTED CMOS DRIVERS FOR VARIOUS APPLICATIONS Sandeep Khantwal*¹ & Rohit Gupta²


*1Assistant Professor ECE department Tula institute of engineering and management, Dehradun ²Assistant Professor EE department SET, Ganga Technical Campus Soldha, Haryana

ABSTRACT

This paper features low voltage boosted CMOS drivers which hen used in various application design gives better switching performance. In this paper a differential logic style is suggested which is named as Boosted CMOS differential logic style when used in applications where speed is primary concern gives gives improved energy delay product and addition time since it has a feature of boosting gate to source voltage due to its structure. Applications like multiplier, FIR filters, Ripple carry adders where BCDL structure is used gives better performance as compared to conventional logic circuits at low voltage.

Keywords: FIR filter, Differential logic, Energy delay product, Voltage boosting, Adder I. INTRODUCTION

Bootstrapping is an effective method for speed development and reduction of power. One of the famous methodologies of reduction of power consumed by CMOS digital circuit is scaling down of supply voltage. This is due to the switching power consumption of the circuit which has quadratic relationship on supply voltage. In certain cases the circuit to be carried in the sub threshold region to obtain maximum energy efficiency. However this method is restricted to used in a low-end design where the speed is secondary concern.. To design a medium and high end in which speed performance and energy efficiency are important much aggressive voltage scaling is not necessary and therefore a close-threshold voltage design is more accurate for obtaining high energy efficiency without severe speed degradation. When the supply voltage scaling near the threshold voltage the speed performance of conventional CMOS circuits like static CMOS logic, the differential cascade voltage switch (DCVS) logic and the domino logic is less required due to the reduction in overdrive voltage (VGS - VTH) of transistors. To eliminate this problem a bootstrapped CMOS large capacitive-load driver was suggested. It was alternative to the speed degradation problem. It gives better the switching speed at low supply voltage using the voltage of some internally nodes to be boosted. For operation of fast logic at low supply voltage CMOS bootstrapped dynamic logic (BDL) was suggested. However, the speed of this logic circuit was not good enough due to the latency bootstrapping bulky circuit which was superimposed on the full latency of the circuit. To eliminate the above problems and to improve the switching activities boosting CMOS differential logic circuit is suggested in this paper. It reduces the area and also eliminates the problem of inefficiency. And the latency issues can resolve by the block of voltage boosting given directly to the differential logic tree.

ISSN 2348 - 8034 Impact Factor- 5.070

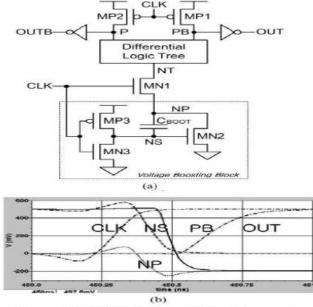


Fig.2 Proposed BCDL. (a) Structure. (b) Simulated waveforms.

It contains a differential logic block known as precharged and a block of voltage- boosting. The voltage-boosting block is shown in the box of dotted line at the lower part of the circuit, is made of transistors like MN2, MN3, and MP3 and CBOOT known as boosting capacitor and it is used to boost the voltage of NP below the ground. The logic block of precharged differential which is contains a differential logic tree with transistor MN1, precharge transistors known as MP1 and MP2, and output inverters get the boosted voltage at NP and calculate the output logic values. It has operation in two phases first is a precharge phase and second is a boosted evaluation phase. The circuit when in the precharge phase then CLK is low. During the precharge phase, the precharged differential logic block is isolated from the voltage-boosting block since MN1 is off. Precharge nodes known as P and PB which are in the differential logic block are precharged by MP1 and MP2 to the supply voltage resulting outputs OUT and OUTB identically low. During same time transistors like MP3 and MN2 which are in block of the voltage- boosting turn on, giving NS and NP to high and low respectively. A voltage similar to the supply voltage is then applied across CBOOT. When CLK goes to high, the circuit changes into the phase of boosted evaluation. When CLK changes to high transistor MN1 is on and the differential logic tree is connected to the voltage boosting block. During same time transistor NS is pulled down approaches the ground giving transistor NP and NT boosted below the ground with the help of capacitive coupling by CBOOT. At the same time the gate source voltages of transistor MN1 and transistors which are in the logic tree are enhanced producing the increase in driving strength of the mentioned transistors. However a little forward source body voltage included in these transistors through voltage of boosting source below the ground resulting in threshold voltage reduction of these transistors, increasing the driving strength of these transistors. The boosted voltage available at NT is then goes to P or PB by the logic tree which depends on input data. At the same time the gate-source voltage of the pmos transistor known as driver transistor is also increasing result in enhancement of driving strength. All these increasing driving strength effects with the help of boosting are combined together with the timing-critical signal paths that is from inputs to the outputs from precharge nodes showing a improvement in switching speed at a region of low- voltage. The BCDL simulated waveforms of this phase are given in Fig. 2(b) in which a supply voltage of 0.5 voltage is used. When CLK reaches high transistor MN1 is on and the differential logic tree is connected to the voltage boosting block. During same time ns is pulled down reaches to ground and with the help of capacitive coupling by CBOOT resulting NP and NT which is boosted below the ground. As indicated in Fig. 2(b) NP reaches to -250 mV and it settles near to -200 mV by action of boosting. At this time the gate source voltages of transistors MN1 and transistors which are on the logic tree are

Fig. (a) shows a generic structure of the proposed logic style i.e. boosted CMOS

ISSN 2348 - 8034 Impact Factor- 5.070

enhanced that resulting in an increase in driving strength of these transistors. However a small forward source-body voltage included in these transistors through voltages of boosting source below the ground resulting in aa reduction of threshold voltages of these transistors and increasing their driving strength. However, the boosted voltage available at NT is then goes to P or PB by the logic tree depends on input data in Fig. 2(b) input data are in such a way that PB is pulled down that is below the ground. The gate-source voltage of pmos driver transistor is also enlarged and this enhances is driving strength. Along the timing-critical signal paths from the inputs to the outputs from precharge nodes all these driving strength increasing effects through boosting are combined together showing improvement in switching speed at a region of low-voltage.

II. SIMULATION COMPARISION

A ripple carry chain of 8 bit was used in the BCDL adder to give boosting operation for each stage of carry chain whereas Manchester carry chain of 8 bit was used in the earlier DCVS and BDL adders for propagation of high speed carry. Fig.3 indicates the previous structure of an 8 bit ripple carry chain used in the BCDL adders.

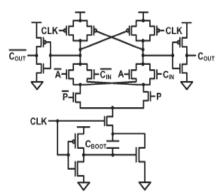


Fig.3. conventional structure of 8 bit ripple carry chain used in BCDL

Propagation of carry is carried out by XOR gate when both input remains 1 whereas its generation is performed when either of its input are equal to 1. Fig.4 indicates the structure of XOR gate for propagation of carry.

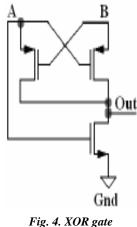


Table 1 gives the total delay, power consumption and power delay product of suggested 1 bit ripple carry adder when compared with previous 1 bit ripple carry adder.

ISSN 2348 - 8034 Impact Factor- 5.070

Ripple	Rising	Falling	Total	Power	
Carry	delay (*)	Delay (*)	delay(*)	consumption(*)	PDP (&)
Adder					
22T (Prop.)	-39	.088	19.54	16	313
24T	-39	.22	19.61	16	314
Units- *=ns, &=ns x ns					

Table 1-1 bit ripple carry adder

Fig.5 gives the rising delay, propagation delay, power consumption and power delay product chart of 1 bit ripple carry adder

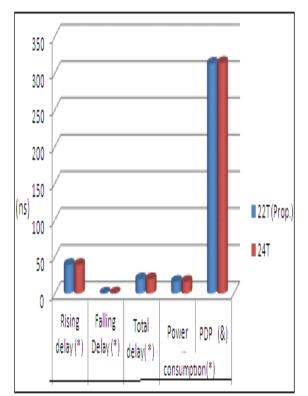


Fig. 5. Rising delay, propagation delay, power consumption and PDP chart of 1 bit ripple carry adder.

III. APPLICATIONS

1. Ripple carry adder

An 8 bit Ripple carry chain was used in the BCDL adder which is used to boost the operation of each stage of carry chain. However an 8 bit carry chain known as Manchester was used in the DCVS adder and BDL adder for carry

ISSN 2348 - 8034 Impact Factor- 5.070

propagation of high speed. Fig.3 indicates the previous structure of 8 bit ripple carry chain utilizes in the BCDL adder.

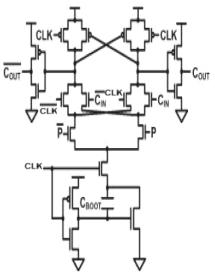


Fig.6. Proposed 8 bit ripple carry chain in bcdl

2. BCDL logic fir filter

Using circuit of BCDL we can design FIR filter. It consist of various elements like adder, delay element and array multipliers. Fig.7 indicates a BCDL logic containing FIR filter. In place of h(0), h(1),h(2),h(3),h(4) we can implement array multiplier.

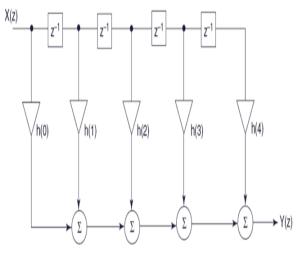


Fig.7 BCDL logic FIR filter

BCDL have feature of giving low energy delay product and reduction in addition time when implementing an FIR filter.

3. Array multiplier

BCDL circuits can also be used for implementing array multipliers. These array multipliers of high speed can be used in designing FIR filter of high speed performance provides high speed performance .Fig.8 indicates array multipliers of 32*32

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034 Impact Factor- 5.070

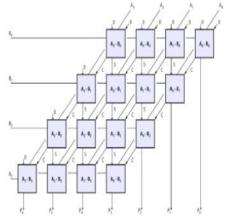


Fig.8 32x32 array multiplier

IV. CONCLUSION

Boosted CMOS differential logic circuit which have feature of to boost voltage has been described. The BCDL gives us improved switching speed when we are comparing with conventional logic circuit at supply voltage which is low through a single boosting circuit which is shared by complementary outputs. The BCDL also have a feature of reduction in area. Requirement of today's portable digital devices is high speed performance and low power dissipation. In applications including BCDL gives all these properties when compared to previous logic circuits. In applications like Ripple carry adders, FIR filter and array multiplier it gives better performance in energy delay product and also the addition time is also reduced where BCDL is used in these circuits.

REFERENCE

- 1. Wang A and Chandrakasan A, "A180 mV FFT processor using sub threshold circuit techniques" in Proc. IEEE ISSCC, 2004, pp. 292–295.
- 2. Heller L G, Griffin W, Davis J, and Thoma N, "Cascode voltage switch logic: A differential CMOS logic family," in Proc. IEEE ISSCC Dig. Tech. Papers, Feb. 1984, pp. 16–17.
- 3. Jong-Woo Kim, Joo-Seong S. Mohan, A. Anitha, "High speed boosted CMOS differential logic for ripple carry adders", International Journal of innovative research in computer and communication engineering, vol.2, special issue 1, Mar. 2014.
- 4. Kim and Bai-Sun Kong "Low-Voltage Approaching Device Threshold" IEEE Transaction on circuit and System-II Express briefs, Vol.59, no.3, March 2012.
- 5. A. P. Chandrakasan, S. Sheng and R. W. Broderson, "Low power CMOS digital design", IEEE J. solid state circuits, vol.27, no.4, pp. 473-483, Apr.1992.
- 6. N. H. E. Waste and K. Eshraghian, Principles of CMOS VLSI Design. Addison-Wesley, 1994.
- 7. Sarita Chouhan, Yogesh kumar, "Low power designing of FIR filter", International Journal of Advanced Technology Engineering research, ISSN NO: 2250-3536, vol.2, issue 2, May 2012.
- 8. S. Hari, "Device threshold based CMOS differential logic style for reducing power delay product", International Journal of Engineering Research and Technology, vol.2, Issue 4, Apr.2013.
- 9. J. H. Lou and J. B. Kuo, "A 1.5V full swing bootstrapped CMOS large capacitive load driver circuit suitable for low voltage CMOS VLSI", IEEE J. Solid state circuits, vol.32, no.1, pp. 119-121, Jan 1997.
- 10. A. M. Shams and M. Bayoumi, "Performance evaluation of 1 bit CMOS adder cells", in Proc. IEEE ISCAS, Orlando, FL, vol.1, pp. 27-30, May 1999.

